Day 3 - Solving by Quadratic Formula

What method do you use when your equations are not factorable, but are in standard form, and a may not be 1 and b may not be even?

The Quadratic Formula
for equations in standard form: $y=a x^{2}+b x+c$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

x represents the zeros and $\mathrm{b}^{2}-4 \mathrm{ac}$ is the discriminant

For the quadratic equations below, use the quadratic formula to find the solutions. Write your answer in simplest radical form.

1) $4 x^{2}-13 x+3=0 a=$ \qquad $b=$ \qquad $c=$ \qquad
2) $9 x^{2}+6 x+1=0$
$a=$ \qquad $b=$ \qquad $\mathrm{c}=$ \qquad

Discriminant: \qquad Discriminant: \qquad
Solutions: \qquad Zeros: \qquad
3) $6 x^{2}+3=10 x \quad a=\ldots \quad b=\ldots \quad c=$
\qquad
\qquad 4) $\frac{1}{2} x^{2}+6 x+13=0 a=$ \qquad $b=$ \qquad $c=$

Discriminant: \qquad
$X=$ \qquad

Discriminant: \qquad
Roots: \qquad

