Mean Absolute Deviation	Definition: Average absolute value of the difference between each data point and the mean. It essentially takes the average distance of the data points from the mean. A data set with a smaller mean absolute deviation has data values that are closer to the mean than a data set with a great mean absolute deviation. The greater the mean absolute deviation, the more the data is spread out. The formula for mean absolute deviation is: $\frac{\sum_{i=1}^{N}\left\|x_{i}-\bar{x}\right\|}{N}$ $\begin{aligned} & X_{1}=\text { data value } \\ & \sum_{N=\text { number of data values }}^{x}=\text { mean } \end{aligned}$ Calculation: - 1 . Find the mean of the set of numbers 2. How far away is each number from the mean? (only positive values) 3. Find the mean of the step 2

Example: Find the MAD of the following numbers.
a. 767779808288909295 b. $15,10,12,18,10,22$
c. $128,152,170,41,161$
d. $44,67,52,72,82,55,70,200,55,57,68$
e. $43,69,49,78,88,54,73,194,54,59,70$
f. $40,62,47,68,12,78,49,65,49,52,63$

