

Algebra 1

Day 2 - Adding and Subtracting Radicals

Simplify.

1)
$$6\sqrt{180x^4y^3}$$

1)
$$6\sqrt{180x^4y^2}$$

3)
$$\sqrt{3} + \sqrt{3}$$

5)
$$-\sqrt{20} + 2\sqrt{5}$$

7)
$$\sqrt{3} + \sqrt{3} + \sqrt{3}$$

9)
$$-3\sqrt{3} - \sqrt{3} + 2\sqrt{18}$$

11)
$$-2\sqrt{8} - 2\sqrt{12} + 3\sqrt{18}$$

13)
$$\sqrt{15}(2-3\sqrt{6})$$

Name Date Period

2)
$$4\sqrt{28u^3v^3}$$

4)
$$\sqrt{6} + \sqrt{6}$$

6)
$$2\sqrt{20} - 3\sqrt{45}$$

8)
$$\sqrt{2} + \sqrt{2} + \sqrt{5}$$

10)
$$-\sqrt{8} - \sqrt{12} - 3\sqrt{12}$$

12)
$$-\sqrt{2} - \sqrt{2} + 3\sqrt{2}$$

$$-10\sqrt{9.2}$$

$$-10\sqrt{9.2}$$

$$-15\sqrt{6}$$

Radical Warm Up 5 mpl fy 3 \sqrt{10} \[\cdot - 2 \sqrt{2} \] $3\sqrt{245}x^{3}$ $21 \times \sqrt{5} \times$ -852

Algebra 1	Unit 4		Notes
Name		Date	

Rational and Irrational Numbers

Rational Numbers

- Numbers that can be written as a fraction of INTEGERS
- Terminating decimals
- Repeating decimals

6 or 6/1	can also be written as	6.0
$-2 \text{ or } \frac{-2}{1}$	can also be written as	-2.0
$\frac{1}{2}$	can also be written as	0.5
$\frac{-5}{4}$	can also be written as	-1.25
$\frac{2}{3}$	can also be written as	0.6666666666 0.ē
2 <u>1</u> 55	can also be written as	0.38181818 0.3 18

Examples:	Non-examples:

Irrational Numbers

- Numbers that cannot be written as a fraction of integers or a ratio.
- Decimals that are non-terminating, non-repeating.

$$\pi = 3.141592654...$$
 $\sqrt{2} = 1.414213562...$
and $0.12122122212...$

Not Perfect Square

Examples:	√ 5	C	Non-example	<u>s:</u>	Vas
V13	V14	V23	V	16	

Algebra 1 Unit 4 Notes

Sort the numbers into rational or irrational. Write the numbers in the appropriate pubble.

0.8 $\sqrt{64}$ $\overset{2}{\checkmark}$ 0 $\sqrt{32}$ -19 $-\sqrt{100}$ 2.343448444... $\frac{3}{\checkmark}$ $\sqrt{75}$ $6\frac{2}{\checkmark}$ 12.6 $\frac{1}{7}$ $\sqrt{121}$ $\frac{12}{\checkmark}$ Tr

1. For each of the numbers below, decide whether it is rational or irrational.

Explain your reasoning in detail.

5	R	nice # (which #)
<u>5</u> 7	R	Fraction
0.575	R	decimal stops
$\sqrt{5}$	I	not Perfect Square
5+√ 7	I	17 is not Perfect Square
$\frac{\sqrt{10}}{2}$	I	510 15 not Perfect Square
$\sqrt{2} \cdot \sqrt{32}$	R	164 is Perfect Square

Algebra 1 Unit 4 Notes

Some students were classifying numbers as rational and irrational.

Decide whether you agree or disagree with each statement.

Correct any errors. Explain your answers clearly.

Student	Statement	Agree or disagree?
Otis	$\frac{\sqrt{3}}{8}$ is a rational number because it can be written as a fraction.	
Lulu	$\frac{\sqrt{3}}{8}$ is irrational because $\sqrt{3}$ is irrational.	>
Leon	$0.\overline{286}$ is rational because you can write it as the fraction $\frac{286}{1000}$.	
Joan	0.286 is an irrational number because that decimal will carry on forever.	
Ray	0.286 (rounded to three decimal places) might be rational or irrational.	
Arita	0.286 is rational - the little dots show the digits carry on in the same pattern forever.	x

Algebra 1

Unit 4

Notes

Sometimes, Always, or Never

Decide if each of the following statements is sometimes, always, or never true. Come up with a few examples or counterexamples to prove your point.

1. Rational + Rational = Rational

$$4 + 9 = 13$$

 $R + R = R$

Always True

2. Rational + Irrational = Irrational

$$Q + \sqrt{Q} = Q + \sqrt{2}$$

$$R + T = T$$

Always True

3. Irrational + Irrational = Irrational

5. Raiional x Irralional - Irralional

$$13 \times \sqrt{2} = 13\sqrt{2}$$

Always True

4. Rational x Rational = Rational

$$10 \times 13 = 130$$

Always Tru

6. Irrational x Irrational = Irrational

$$\sqrt{3} \times \sqrt{14} = \sqrt{182}$$

$$\overline{1} \times \overline{1} = \overline{1}$$

$$\sqrt{2} \times \sqrt{8} = \sqrt{16}$$

$$\overline{1} \times \overline{1} = R$$

Sometimes Trus

Foundations of Algebra Unit 2: Complex Number Systems Practice Day 8: Irrational & Rational Numbers Name: 0 25 **Practice Assignment** 50 75 100 Decide whether the following numbers, sums or products yield a number that is rational or irrational. Simplify if necessary and explain for each problem why it is a rational or irrational number. 2. 1.245... 4. 3π repeats 5. $\sqrt{9} + \sqrt{7}$ 6. $\sqrt{4} + \sqrt{16}$ 7. $\sqrt{2} \cdot \sqrt{18}$ 8. $\frac{\sqrt{5}}{2} + 3$ 7. $\sqrt{3} \cdot \sqrt{18}$ 6. $\sqrt{4} + \sqrt{16}$ 7. $\sqrt{2} \cdot \sqrt{18}$ 7. $\sqrt{3} \cdot \sqrt{18}$ not P.S. 10. $\sqrt{8}(5\sqrt{8}+\sqrt{2})$ 9. $(\sqrt{8}+4)\cdot 4$ $11. \ 2\sqrt{2}(5+\sqrt{2})$ 12. $2(\sqrt{5}+\sqrt{7})$

Practice

Foundations of Algebra Unit 2: Complex Number Systems

Given the following values, determine if the sums or products will be rational or irrational.

$$v = \sqrt{16}$$
 $w = -\sqrt{10}$ $x = \sqrt{4}$ $y = 8$ $z = \sqrt{10}$

13.
$$x + y$$
 14. xy

$$16. x^2$$
 $17. x + z$ $18. yz$

Radical Practice

Algebra 1

Name ID: 1

Radical Practice

Date_____ Period____

Simplify.

1)
$$-\sqrt{18}$$

2)
$$-3\sqrt{12}$$

3)
$$4\sqrt{8}$$

4)
$$-3\sqrt{18}$$

5)
$$-3\sqrt{30}$$

6)
$$-4\sqrt{48}$$

7)
$$-5\sqrt{27}$$

8)
$$2\sqrt{48}$$

9)
$$-5\sqrt{45}$$

10)
$$-\sqrt{20}$$

11)
$$2\sqrt{12} \cdot 2\sqrt{15}$$

12)
$$\sqrt{6} \cdot \sqrt{6}$$

13)
$$\sqrt{2} \cdot -\sqrt{5}$$

14)
$$\sqrt{12} \cdot \sqrt{6}$$

-1-

15) $\sqrt{18} \cdot 4\sqrt{3}$

16) $\sqrt{18} \cdot \sqrt{18}$

17) $\sqrt{25} \cdot \sqrt{25}$

18) $3\sqrt{24} + 3\sqrt{24}$

19) $-3\sqrt{20} - 2\sqrt{5}$

20) $3\sqrt{20} + 2\sqrt{45}$

21) $3\sqrt{8} + 2\sqrt{8}$

22) $-2\sqrt{24} - \sqrt{54}$

23) $2\sqrt{45} - 3\sqrt{5}$

24) $2\sqrt{8} + 2\sqrt{2}$

25) $-2\sqrt{27} - 2\sqrt{12}$

26) $\sqrt{3}(2-2\sqrt{6})$

27) $5\sqrt{3}(2+\sqrt{5})$

28) $4\sqrt{2}(\sqrt{2}+5)$

29) $\sqrt{5}(2-\sqrt{10})$

30) $\sqrt{15}(2\sqrt{10}-\sqrt{6})$

-2-