1		N.S. rielland A.F. Ser	Examples	
	What you need to now & be able to	Things to remember	EXO	imples
0	do . Find the everage rate of change given a graph	-Determine your two x-values and find their corresponding y- values on the parabola. -Calculate the rate of change (rise over run)	a. On interval from $0 \le x \le 2$: $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	b. On interval from -3 ≤ x ≤ 0:
	2. Applications of the Vertex	Maximum/Minimum indicate finding the vertex. Interpret the vertex in terms of what x and y represent.	What is the maximum height reached by the rocker and now long does to reach that height? $X = -\frac{b}{2a} = -\frac{128}{2(-16)} = -\frac{128}{-32} = 4 \text{ alconds}$ in	
	3. Determine the equation of a parabola using its zeros.	The zeros and factors in the equation have opposite signs.	a. Create an equation, in factored form, to represent the following graph. $Y = (x + 5)(x + 1)$	b. Create an equation, in factored form, to represent the following graph. $Y = (x + 1)(x - 3)$
	4. Solve Quadratic Equations	Solve by Factoring or Quadratic Formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	a. Solve for x: $x^2 - 9x + 20 = 0$ (x - 4)(x - 5) = 0 x = 4 and $x = 5$	b. Solve for x: $x^2 - 13x + 47 = 7$ $-7 - 7$ $x^2 - 13x + 40 = 0$ $(x - 8)(x - 5) = 0$ $x = 8 \text{ and } x = 5$

E Campulation that	Hard A.		
5. Completing the Square	Move the c term to the right side Use $\left(\frac{b}{2}\right)^2$ to	a. What would be the missing number in line 2 if solving by completing the square? $\frac{4}{2}(2)^{2} + 4x + 11 = 10$	b. What would be the missing number in line 2 if solving by completing the square? $\frac{-16}{2} = (-8)_{x^2 - 16x + 52}^2 = 0$
	complete the square and then apply square root method	$x^{2} + 4x + 11 = 10$ $x^{2} + 4x + 4 = -1 + 4$	$x^2 - 16x + 52 = 0$ $x^2 - 16x + 64 = -52 + 64$
6. Solve equations by finding square roots.	Use solving by square roots when your equations have parenthesis or two terms (a & c). PEMDAS (backwards)	$x-4)^{2}=9$ $x-4)^{2}=9$ $x-4)^{2}=9$ $x-4)^{2}=9$ $x-4)^{2}=9$ $x=4$ $x=4$ $x=7$ $x=7$	b. $2(x+3)^2 + 2 = 34$ $-1 - 2$ $8(x+3)^2 = 32$ $\sqrt{(x+3)^2} = 16$ $x+3 = \pm 4$
7. Solving literal equations	Remember you "literally" write what you see. Think about how you will undo the square term.	a. Solve for r: $A = \pi r^2$ $A = \pi^2$ $A = \pi^2$	b. Solve for $3V = 3$ 1 1 1 1 1 1 1 1 1 1
8. Describe the transformations of an exponential function.	$f(x) = a(b)^{x-h} + k$ a stretches or shrinks AND/OR reflects k moves the function	a. Given the function $g(x) = 2^x$, write a new equation after a transformation of right 9 and reflect across the x-axis. $g(x) = -2^{x-9}$	b. Describe the transformation $h(x) = 10^x$ to $k(x) = 4(10)^{x+1}-5$. • Shetch by 4
9. Determine the	up and down. h moves the function left and right. You can always	a. Determine the y-intercept and	b. Determine the y-intercept and
y-intercept and asymptote from an equation	substitute 0 in for x to find a y-intercept Asymptote: y = k No 'k' value, the asymptote is y = 0.	asymptote of the function $y = 3(2)^x$. Y-int: $y = 3(2)^0$ y = 3 (0,3) Coymptota: $y = 0$	asymptote of the function $y = 4(\frac{1}{2})^{x} - 2.$ $y = 10$ $y = 4(\frac{1}{2})^{x} - 2$ $y = 2 (0, 2)$ $y = 2 (0, 3)$ $y = 2 (0, 3)$
10. Create equations from a graph or table	y = y-int(constant ratio)×	0. $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	b. y= 27(43) 27,9,3

11. Determine the growth/decay	(1 + r) and (1 - r) represent the growth	a. $y = 3(1.25)^x$ Growth	b. y = 2(.84)x Decay
factor and rate.	and decay factors	Determine if the function is growth or decay:	Determine if the function of growth or decay:
3-18-25	Rate is just the r value	Factor: 1.25	Factor: 84
		Rate: 25%	Rate: \6000
10 1 5 5	Canada a all alt	100+_=1a5	100=84
12. Applications of exponential functions.	Growth: $y = a(1 + r)^{\dagger}$ Decay: $y = a(1 - r)^{\dagger}$	a. A certain radioactive element decays at a rate of 21% per month. If	b. The value of the Barbie Dream House is \$125,000. This house is in a
Tunctions.	a: initial amount	the starting amount was 32 ounces, how much will be left after 1 year?	prime location and appreciates (increases in value) at a rate of 7% per year. How much will the Barbie
E to Avenue	t: time r: Growth/Decay rate	Model: y = 32 (.79)	Dream House be worth in 5 years?
4016		4 7 0 1/2	Model: y=125,000(1.07)*
		y=32(.79)12	, ,5
probable of			y=125,000 (1.07)5
	and the same	Solution: 1,89 ounces	Solution: \$175,318.97
12 Arithmetic 9	A viah we call or	AND CONTRACTOR OF THE PARTY.	b. Create an explicit and recursive
13. Arithmetic & Geometric Sequences	Arithmetic: Explicit: $a_n = a_1 + (n-1)d$	a. Create an explicit and recursive formula for the following:	formula for the following: 81, 27, 9, 3,
	Recursive:	an= -4-5(n-1) OR	an = 81 (1/3) 1-1
(8)-484	$a_1 = \underline{\qquad}$ $a_n = a_{n-1} + d$	$a_n = -5n + 1$	
	Geometric:	$a_1 = -4$	n=81
	Explicit: $a_n = a_1 \cdot r^{n-1}$	an = an - 1 - 5	
	Recursive:	041 041-1	an=13(an-1)
	$a_1 = \frac{1}{a_n}$ $a_n = r(a_{n-1})$	c. Determine the 9 th term in the	d. Given the sequence -3, 0, 3, 6 find the 32 nd term. An threatic
	You must always know your first term	sequence: 5, 15, 45, Clometric	an = -3 + 3(n-1) OR
	and the constant ratio/common difference to write an	$Q_n = 5(3)^{n-1}$	an= 3n-6
	explicit formula!	$Q_q = 5(3)^{q-1}$	0 2(20) 1
			0.32 = 3(32)-6
		ag = 3a,805	$\boxed{032 = 90}$
		e. Determine the first five terms of the sequence: $a_n = -2 \cdot 3^{n-1}$	f. Determine the first five terms of the sequence: $a_1 = 6$ $a_n = \frac{1}{2}(a_{n-1})$
	200 mg 75° 10	-2,-6,-18,-54,-162,	6, 3, 1. 5, .75, .375,
			41-11-11-11-11-11-1

Jussey .	g. Determine the first five terms of the sequence: $a_1 = 7$	h. Determine the first five terms of the sequence: $a_n = -5n + 2$.
A COLOR AND	$a_n = a_{n-1} - 3$	12345
28. neses	7,4,1,-2,-5	-3-8-13-18-23
100	i. Write the explicit formula given the following arithmetic sequence: a ₄ = 6 and a ₅ = 2	j. Write the explicit formula given the following geometric sequence: $\alpha_3 = -18$ and $\alpha_4 = -54$
MO = - 1001	123145	1121314
	1 2 3 4 5	-2 -6 -18 -54
Transportation of the second	$a_n = 18 - 4(n-1)$	$a_n = -2(3)^{n-1}$
	an = -4n+aa	
14. Sequence Applications	a. The table shows a car's value for 3 years after it is purchased. a. Does this table form an arithmetic or	
	geometric sequence? Explain how you	DESCRIPTION OF THE PROPERTY AND PERSONS ASSESSMENT OF THE PERSONS ASSE
The Same	Geometric because you	2 15,300
Store on the store of the store	multiplying by 0.85	3 13,005
	b. Create an explicit formula to represen	If the table. $\frac{18000}{1530} = 18$
The sale	an = 18,000(.85)n-1	15300 (85)
man and the	c. How much is the car worth after 8 year	1800 (83)
19 - 10	08= 18000 (.85)8-1	Show and
	0,55770	Comment of the commen

You will also have five questions on the exam over content from before Units 3 – 7 to begin preparing you for the EOC. We covered the following topics:

- Creating algebraic expressions, equations, and inequalities
- Solving an equation
- Solving an inequality
- Determining if a graph, table, set of points, or mapping was a function
- Graphing linear functions
- Writing equations of line
- Finding the slope and y-intercept
- Describe the characteristics of a linear function
- Solving systems of equations using substitution or elimination
- Solve a real world system of equations
- Graph a system of equations and inequalities
- Perform operations of addition, subtraction, and multiplication on polynomials
- Factoring polynomials