\qquad
\qquad

More Characteristics of Quadratics and Graphing in Standard Form

Interval of Increase: The part of the graph that is rising as you read from left to right on the x-axis (What part of the graph goes uphill?)

Graph 1: \qquad

Graph 2: \qquad

Graph 2

Interval of Decrease: The part of the graph that is falling as you read from left to right on the x-axis. (What part of the graph goes downhill?)

Graph 1: \qquad

Graph 2: \qquad

End Behavior: Behavior of the graph of $f(x)(y$-values) as x approaches positive infinity (heading to the right) or negative infinity (heading to the left. What direction are the ends of the function going? End behavior is written as:

$$
\begin{aligned}
& \text { As } x \rightarrow-\infty, f(x) \rightarrow \\
& \text { As } x \rightarrow \infty, f(x) \rightarrow
\end{aligned}
$$

Graph 1: As $x \rightarrow-\infty, f(x) \rightarrow$ \qquad . As $x \rightarrow \infty, f(x) \rightarrow$ \qquad .

Graph 2: As $x \rightarrow-\infty, f(x) \rightarrow$ \qquad . As $x \rightarrow \infty, f(x) \rightarrow$ \qquad .

Calculating Average Rate of Change

The average rate of change is the slope of the line that passes through these two points.

$$
\text { Remember slope is: } \frac{\text { rise }}{\text { run }} \text { or } \frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Calculate average rate of change on interval $0 \leq x \leq 2$.

Calculate average rate of change on interval $\mathrm{x}=0$ to $\mathrm{x}=3$

Calculate the average rate of change of the function $y=(x-4)^{2}$ on the given intervals:
$1 \leq x \leq 3$
$-2 \leq x \leq 2$

Practice: Describe the characteristics of the following graphs:

Transformations: \qquad
Vertex: \qquad Equation: \qquad
Interval of Increase: \qquad Interval of Decrease: \qquad

End Behaviors: As $x \rightarrow-\infty, f(x) \rightarrow$ \qquad .

As $x \rightarrow \infty, f(x) \rightarrow$ \qquad .

Average Rate of Change from $x=2$ to $x=4$

Transformations:

Vertex: \qquad Equation: \qquad Interval of Increase: \qquad Interval of Decrease: \qquad
End Behaviors: As $x \rightarrow-\infty, f(x) \rightarrow$ \qquad .
As $x \rightarrow \infty, f(x) \rightarrow$ \qquad .
Average Rate of Change from $0 \leq x \leq 2$ \qquad

Graphing Quadratics in Standard Form

$$
\text { 1) Graph } y=2 x^{2}+6 x+1
$$

1. Label your a, b, and c.
2. Find the vertex using $x=\frac{-b}{2 a}$ and then substitute that value into the equation to find the y.
3. Draw the axis of symmetry.
4. Create an xy-table (VERTEX IN THE MIDDLE!)
5. Draw a parabola through points.
2) Graph $y=x^{2}-6 x+8$

Vertex: \qquad
Interval of Increase: \qquad
Interval of Decrease: \qquad
End Behaviors: As $x \rightarrow-\infty, f(x) \rightarrow$ \qquad .
As $x \rightarrow \infty, f(x) \rightarrow$ \qquad .
Average Rate of Change from $4 \leq x \leq 5$
\qquad
3) $\operatorname{Graph} f(x)=-x^{2}+4 x-6$

Vertex: \qquad
Interval of Increase: \qquad
Interval of Decrease: \qquad

End Behaviors: As $x \rightarrow-\infty, f(x) \rightarrow$ \qquad .
As $x \rightarrow \infty, f(x) \rightarrow$ \qquad .
Average Rate of Change from $x=3$ to $x=4$
4) $\operatorname{Graph} f(x)=2 x^{2}+4 x-3$

Vertex: \qquad
Interval of Increase: \qquad
Interval of Decrease: \qquad
End Behaviors: As $x \rightarrow-\infty, f(x) \rightarrow$ \qquad .
As $x \rightarrow \infty, f(x) \rightarrow$ \qquad .
Average Rate of Change from $-3 \leq x \leq-1$
\qquad

