
Exponential Functions Unit Review

Skill	Things to remember	Examples		
1. Determine if representations are exponential. Explain why or why not	Exponential Functions: -Variable in exponent -Constant Ratios -Graph is a curve Linear Functions: -Constant differences -Graph is a line	a. Determine if the points are exponential or linear: a. 0/10/10/10/10/10 x -3 -2 -1 0 1 y 0.16 0.8 4 20 100 x5 x5 b. (-2, 5) (-1, 4) (0, 3) (1, 2) (2, 1)	b. Determine if the equations are linear or exponential: a. y = 3x - 4 lx ponential b. y = 22 linear	
2. Determine if a function is exponential growth or decay and explain why.	0 < b < 1: Decay b > 1: Growth	a. $y = .75 \left(\frac{3}{2}\right)^x$ C. What is the function growing by? $Y = 3(2)^x$	b. $y = \left(\frac{1}{2}\right)^x$	
3. Graph an exponential function.	$y = ab^x$ Create a table with values (5 points is a must) $\begin{array}{c} X \\ -3 \\ -2 \\ -1 \\ 0 \\ 1 \end{array}$	a. Graph: $f(x) = \left(\frac{1}{2}\right)^x$	b. Graph: $f(x) = 3 \cdot 2^{x-1} + 1$	
4. Describe the transformations of an exponential function.	$f(x) = a(b)^{x-h} + k$ a stretches or shrinks AND/OR reflects k moves the function up and down. h moves the function left and right. The new asymptote is the line $y = k$.	a. Given the function $f(x) = 2^x$ write a new equation after a transformation of left 7 and up 3. $f(x) = 2^{x+7} + 3$ c. Describe the transformation $h(x) = 10^x$ to $k(x) = 4(10)^{x+1} - 5$. Stretch by 4 Lyt 1 down 5	b. Given the function $g(x) = 2^x$, write a new equation after a transformation of right 9 and reflect across the x-axis. $g(x) = -2^{x-9}$ d. Bescribe the transformation from $g(x)$ to $g(x)$.	

1			
9. Determine the growth/decay	(1 + r) and (1 - r) represent the growth	a. $y = 3(1.25)^x$	b. y = 2(.84)×
factor and percent.	and decay factors	Determine if the function is growth or decay:	Determine if the function is growth decay: Decay
The state of	Percent is just the r value	Factor: 1.25	Factor: .84
The second	A Company	Percent: 25%.	Percent: 16%
	Will Land	100% + ? = 125%	100% = 84%
10. Applications of	$y = a(1+r)^t$	a. Duke deposits \$2000 into a bank	b. The value of the Barbie Dream
exponential functions.	$y = a(1-r)^t$	account that pays 5% interest compounded monthly. Find the	House is \$125,000. This house is in a prime location and appreciates
	$A = P\left(1 + \frac{r}{n}\right)^{nt}$	balance in the account after 4 years. Model: $A = 2000 \left(1 + \frac{05}{12}\right)^{12} t$	(increases in value) at a rate of 7% per year. How much will the Barbie Dream House be worth in 5 years?
145		$A = 2000 \left(1 + \frac{05}{12}\right)^{12.4}$	Model: $y = 125,000(1.07)^{t}$ $y = 125,000(1.07)^{5}$
	3	1 12/	y=125,000 (1.07)5
10180		Solution: 92441.79	Solution: 175, 319
CARCH		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	d. Michael is offered two jobs – Job
	A THE REST	decays at a rate of 21% per month. If the starting amount was 32 ounces,	A, which offers him a starting salary of \$20,000 a year with a 5% raise
5, 75. 5	Par 12 My	Model: $\sqrt{=32(.79)^{t}}$ %	each year he works there and Job B, which offers him a starting salary of 625,000, but only a 3% raise each
	1313	$y = 32(.79)^{12}$	rear. Michael plans to work to work at the job fo <u>r 7 years</u> . Which job
		Solution: 4=1.89 ounces	Tob A: $y = 20,000 (1.05)$
		J	y=\$28,142
		, 50	y=25,000(1-03) ^t y=25,000(1.03) ⁷ y=\$30,747
11. Solve an	*Rewrite the bases	a. $4^{x+2} = 4^{4x-1}$ b.	$\frac{666}{5^{3x-3}} = \frac{125}{125}$
exponential equation.	using exponents.	X/2=4X-1	5 ^{3x-3} =5 ³
		$\frac{-\chi+1}{3}=3\chi$	3x-3=3
		3 3	$\frac{-\frac{75}{3}}{\frac{3}{2}} = \frac{6}{1}$ [X=2]
		C. $9^{3x+16} = 81^{x+5}$	$\frac{3}{4^{2x}} = 64$
		$93x+16=9^{2}(x+5)$	424 = 43
		3x+10 = 2x+10 -2x-10 - 2x - 16	2x=3
		X = - 6	$\frac{3}{\sqrt{2}}$
		12.00	1/2/2

Explicit: $a_n = a_1 \cdot r^{n-1}$ Recursive: $a_1 = a_n = r(a_{n-1})$ You must always know your first term and the common ratio to write an explicit formula!	a. Create an explicit and recursive formula for the following: 2, 6, 18, 54, $a_1 = 2$ $Y = 3$ Explicit: $a_1 = 2(3)^{n-1}$ Recursive: $a_1 = 2$ $a_n = 3(a_{n-1})$	b. Create an explicit and recursive formula for the following: 81, 27, 9, 3, $Q_1 > 81$ $V = 1/3$ Explicit: $Q_1 > 81$ (1/3) Recursive: $Q_1 = 81$ $Q_1 = \frac{1}{3}(Q_{n-1})$
	c. Determine the 12th term in the sequence: 5, 15, 45, $a_1 = 5$ $Y = 3$ $a_1 = 5(3)^{n-1}$ $a_{12} = 5(3)^{n-1}$ $a_{12} = 885,735$	d. Determine the 10 th term in the sequence: 0.1, 0.5, 2.5, $Q_1 = 0.1 Y = 5$ $Q_1 = 0.1 (5)^{X-1}$ $Q_{10} = 0.1 (5)^{10-1}$ $Q_{10} = 195, 312.5$
	e. Determine the first five terms of the sequence: $a_n = -2 \cdot 3^{n-1}$ $-2, -10, -18, -54, -162$	sequence: $a_1 = 6$ $a_n = \frac{1}{2}(a_{n-1})$
	g. Write the explicit formula given the following: $a_4 = 192 \text{ and } a_5 = 768$ $3 4 5$ $3 13 48 192 768$ $0 768$ $0 768$	h. Write the explicit formula given the following: $a_2 = -6$ and $a_3 = -18$ $2 - 6 - 18$ $3 - 18$ $3 - 18$ $3 - 18$ $3 - 18$ $3 - 18$ $3 - 18$
	Recursive: a ₁ = a _n = r(a _{n-1}) You must always know your first term and the common ratio to write	Recursive: $a_1 = \frac{1}{a_n = \Gamma(a_{n-1})}$ You must always know your first term and the common ratio to write an explicit formula! C. Determine the 12^{th} term in the sequence: 5 , 15 , 45 , $a_1 = 5$ $a_1 = 3$ C. Determine the 12^{th} term in the sequence: 5 , 15 , 45 , $a_1 = 5$ $a_1 = 5$ $a_1 = 5(3)^{n-1}$ $a_1 = 5(3)^{n-1}$ Quarties the first five terms of the sequence: $a_1 = -2 \cdot 3^{n-1}$ $a_1 = -2 \cdot 3^{n-1}$ $a_2 = -2 \cdot 3^{n-1}$ $a_3 = -2 \cdot 3^{n-1}$ $a_4 = -2 \cdot 3^{n-1}$ $a_5 = -2 \cdot 3^{n-1}$ $a_6 = -2 \cdot 3^{n-1}$