Exponential Growth is where a quantity increases over time where exponential decay is where a quantity decreases over time. When we discuss exponential growth and decay, we are going to use a slightly different equation than $y=a b^{x}$. When you simplify your equation, it will look like $y=a b^{x}$, but to begin, you will use the following formulas:

Exponential Growth
$\mathbf{y = a (1 + r})^{t}$
where $a>0$

$y=$ final amount
$a=$ initial amount
$r=$ growth rate (express as decimal)
$t=$ time
$(1+r)$ represents the growth factor
$\frac{\text { Exponential Decay }}{y=a(1-r)^{\dagger}}$
where $a>0$
$y=$ final amount
$a=$ initial amount \dagger
$r=$ decay rate (express as decimal)
$t=$ time
($1-r$) represents the decay factor

Finding Growth and Decay Rates

Example 1: Identify the following equations as growth or decay. Then identify the initial amount, growth/decay factor, and the growth/decay percent.
a. $y=3.5(1.03)^{\dagger}$

Growth/Decay: \qquad
Initial Amount: \qquad
Growth/Decay Factor: \qquad
Growth/Decay Percent: \qquad
c. $g(t)=400(0.925)^{\dagger}$

Growth/Decay: \qquad
Initial Amount: \qquad
Growth/Decay Factor: \qquad
Growth/Decay Percent: \qquad
b. $f(t)=10,000(0.95)^{t}$

Growth/Decay: \qquad
Initial Amount: \qquad
Growth/Decay Factor: \qquad
Growth/Decay Percent: \qquad
d. $y=2,500(1.2)^{\dagger}$

Growth/Decay: \qquad
Initial Amount: \qquad
Growth/Decay Factor: \qquad
Growth/Decay Percent: \qquad

Growth and Decay Word Problems

Example 2: The original value of a painting is $\$ 1400$ and the value increases by 9% each year. Write an exponential growth function to model this situation. Then find the value of the painting in 25 years.

Growth or Decay: \qquad

Starting value (a): \qquad
Rate (as a decimal): \qquad
Function: \qquad

Example 3: The population of a town is decreasing at a rate of 1% per year. In 2000 , there were 1300 people. Write an exponential decay function to model this situation. Then find the population in 2008.

Growth or Decay: \qquad

Starting value (a): \qquad

Rate (as a decimal): \qquad
Function: \qquad

Example 4: The cost of tuition at a college is $\$ 12,000$ and is increasing at a rate of 6% per year. Find the cost of tuition after 4 years.

Growth or Decay: \qquad
Starting value (a): \qquad
Rate (as a decimal): \qquad
Function: \qquad

Example 5: The value of a car is $\$ 18,000$ and is depreciating at a rate of 12% per year. How much will your car be worth after 10 years?

Growth or Decay: \qquad

Starting value (a): \qquad

Rate (as a decimal): \qquad

Function: \qquad

Applications of Exponential Functions - Compound Interest

As you get older, you will come to learn a great deal about investing your money...savings accounts, stock market, mutual funds, bonds, etc. Today, we are going to learn about compound interest, which is a form of saving and earning money by letting it sit in an account over time. Compound Interest is interest earned or paid on both the principal and previously earned interest. In middle school, you learned about simple interest, which is interest that is only earned on the principal. It's formula is $I=$ Prt, where P represents principal, r represents rate, t represents time, and I represents interest.

Compound Interest

$$
A=P\left(1+\frac{r}{n}\right)^{n t}
$$

> A = balance after t years
> $\mathrm{P}=$ Principal (original amount)
> $\mathrm{r}=$ interest rate (as a decimal)
> $\mathrm{n}=$ number of times interest is compounded per year
> $t=$ time (in years)

Example 1: Write a compound interest function that models an investment of $\$ 1000$ at a rate of 3% compounded quarterly. Then find the balance after 5 years.

$$
\begin{aligned}
& P=\square \\
& r= \\
& n= \\
& t=
\end{aligned}
$$

Example 2: Write a compound interest function that models an investment of $\$ 18,000$ at a rate of 4.5% compounded annually. Then find the balance after 6 years.
$P=$ \qquad
$r=$ \qquad
$\mathrm{n}=$ \qquad
$\dagger=$ \qquad

Example 3: Write a compound interest function that models an investment of $\$ 4,000$ at a rate of 2.5% compounded monthly. Then find the balance after 10 years.
$P=$ \qquad
$r=$ \qquad
$\mathrm{n}=$ \qquad
$\dagger=$ \qquad

Summary of Exponential Word Problems

Creating a Growth Function Given a Percentage Rate

The number of chickens in the farm of Sunny House is currently 2,400 . The farm grows at an annual rate of 15%. How many chickens will be there in 7 years?

Growth: $y=a(1+r)^{\dagger}$ Increase Grow
Appreciate Gains

Creating a Decay Function Given a Percentage Rate

A limousine costs $\$ 75,000$ new but depreciates at a rate of 23% per year. What is the value of the limousine after five years?

Decay: $y=a(1-r)^{\dagger}$
Decreases
Decays
Depreciates
Loses

Creating an Exponential Function without Being Given a Percentage Rate

A $5^{\text {th }}$ grade class is raising meal worms for an experiment. They start with 10 meal worms. The population triples every hour. How many meal worms does the class have after 12 hours?

Special Key Words
Doubles ($b=2$)
Triples $(b=3)$
Half ($b=1 / 2$)
These values replace ($1 \pm r$)

Creating an Exponential Function Given a Pattern

A population of bees is decreasing. The population in a particular region this year is 1250 . After year 1 , it is estimated that the population will be 1000. After 2 years, it is estimated that the population will be 800 . What will the population be in 6 years?

Without a Given Rate:

Determine if pattern is growth or decay

