As you can hopefully recall, you learned about characteristics of functions in Unit 2 with linear functions and Unit 5 with quadratic functions. We are going to apply the same characteristics, but this time to exponential functions.

Domain and Range		
Domain		
Define: All possible values of x	Think: How far left to right does the graph go?	Write: Smallest $\mathrm{x} \leq \mathrm{x} \leq$ Biggest x *use < if the circles are open*
Range		
Define: All possible values of y	Think: How far down to how far up does the graph go?	```Write: \\ \(y<\) highest \(y\) value (opens down) y > lowest y value (opens up)```

Domain:
Range:

Domain:
Range:

Domain:
Range:

Domain:
Range:

Y-Intercept		
Define: Point where the graph crosses the y-axis	Think: At what coordinate point does the graph cross the y-axis?	Write: (0,b)
X-Intercept		
Define: Point where the graph crosses the x-axis	Think: At what coordinate point does the graph cross the x-axis?	Write: $(a, 0)$
Zero		
Define: Where the function (y-value) equals 0	Think: At what x-value does the graph cross the x-axis?	$\begin{aligned} & \text { Write: } \\ & x= \end{aligned}$

X-intercept:
Y-intercept:

X-intercept:
Y-intercept:

X-intercept: Zero:
Y-intercept:

X-intercept:
Zero:
Y-intercept:

Maximum			
Define: Highest point of a function.	Think: What is my highest point on my graph?	Write: $y=$	
Define: Lowest point of a function.	Minimum Think:		
What is the lowest point on my graph?	Write: $y=$		
Define: A line that the graph get closer	What values does my graph begin to flat line towards?	Write: $y=$	

Maximum:
Minimum:
Asymptote:

Maximum: Minimum:
Asymptote:

Maximum: Minimum:
Asymptote:

Maximum:
Minimum:
Asymptote:

Interval of Increase		
Define: The part of the graph that is rising as you read left to right.	Think: From left to right, is my graph going up?	Write: An inequality using the x-value of the vertex
Interval of Decrease		
Define: The part of the graph that is falling as you read from left to right.	Think: From left to right, is my graph going down?	Write: An inequality using the x-value of the vertex

Interval of Increase:
Interval of Decrease:

Interval of Increase:
Interval of Decrease:

End Behavior

End Behavior	
Define: Behavior of the ends of the function (what happens to the y-values or $f(x)$) as \times approaches positive or negative infinity. The arrows indicate the function goes on forever so we want to know where those ends go.	
Think: As \times goes to the left (negative infinity), what direction does the left arrow go?	Write: As $x \rightarrow-\infty, f(x) \rightarrow-$
Think:	

As x approaches $-\infty, \mathrm{f}(\mathrm{x})$ approaches \qquad .

As x approaches $\infty, f(x)$ approaches \qquad .

As x approaches $-\infty, f(x)$ approaches \qquad .

As x approaches $\infty, \mathrm{f}(\mathrm{x})$ approaches \qquad -

As x approaches $-\infty, \mathrm{f}(\mathrm{x})$ approaches \qquad .

As x approaches $\infty, f(x)$ approaches \qquad .

 \qquad .

As x approaches $\infty, f(x)$ approaches \qquad .

Average Rate of Change: Rate of change or slope for a given interval on a graph. The given interval is written using the inequality notation $a \leq x \leq b$, where a and b represent the initial and final x-value of the interval.

Calculate the average rate of change for the interval $0 \leq x \leq 2$

Calculate the average rate of change for the interval $0 \leq x \leq 2$

Calculate the average rate of change for the interval $-1 \leq x \leq 2$

Calculate the average rate of change for the interval $0 \leq x \leq 1$

Average Rate of Change from an Equation

If you are given an equation of a function and asked to calculate the average rate of change for that function over a given interval, you will substitute the initial x-value and the final x-value into the function to create two sets of ordered pairs. Then using the ordered pairs, substitute into the slope formula.
a. $y=3^{x} ; 1 \leq x \leq 3$
b. $y=2(1 / 2)^{x} ;-4 \leq x \leq 0$

